MRF8004 (SILICON)

The RF Line

NPN SILICON RF POWER TRANSISTOR

. . . designed primarily for use in large-signal output amplifier stages. Intended for use in Citizen-Band communications equipment operating to 30 MHz. High breakdown voltages allow a high percentage of up-modulation in AM circuits.

Specified 12.5 V, 27 MHz Characterisitcs —

Power Output = 3.5 W Power Gain = 10 dB Efficiency = 70% Typical

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Collector-Emitter Voltage	VCEO	30	Vdc	
Collector-Base Voltage	V _{СВО}	60	Vdc	
Emitter-Base Voltage	VEBO	3.0	Vdc	
Collector Current - Continuous	¹ C	1.0	Adc	
Total Device Dissipation @ T _C = 25°C (1) Derate above 25°C	PD	5.0 28.6	Watts mW/ ^O C	
Storage Temperature Range	T _{stg}	-65 to +200	°c	

FIGURE 1 -- 27 MHz TEST CIRCUIT

3.5 W - 27 MHz **RF POWER TRANSISTOR NPN SILICON**

12.70 6.35 - 1.27 90° NOM 2.54 -All JEDEC dimensions and notes apply.

CASE 79-02 TO-39

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage (IC = 50 mAdc, IB = 0)	BACEO	30	-	_	Vdc
Collector-Emitter Breakdown Voltage (I _C = 200 mAdc, V _{BE} = 0)	B∨CES	60	-	=	Vdc
Emitter-Base Breakdown Voltage (IE = 1.0 mAdc, IC = 0)	BVEBO	3.0	-	_	Vdc
Collector Cutoff Current (VCB = 50 Vdc, IE = 0)	CBO	-	-	0.01	mAdc
ON CHARACTERISTICS					
DC Current Gain (I _C = 400 mAdc, V _{CE} = 2.0 Vdc)	hFE	10	-	-	-
DYNAMIC CHARACTERISTICS					
Output Capacitance (VCB = 12.5 Vdc, 1 _E = 0, f = 1.0 MHz)	C _{ob}	_	35	70	pF
FUNCTIONAL TEST					
Common-Emitter Amplifier Power Gain (See Figure 1) (Pout = 3.5 W, VCC = 12.5 Vdc, f = 27 MHz)	GPE	10	-	-	dB
Collector Efficiency (2) (See Figure 1) (P _{out} = 3.5 W, V _{CC} = 12.5 Vdc, f = 27 MHz)	η	62.5	70	_	%
Percentage Up-Modulation (1) (See Figure 1) (f = 27 MHz)	-	_	85		%
Parallel Equivalent Input Resistance (Pout = 3.5 W, V _{CC} = 12.5 Vdc, f = 27 MHz)	Rin	-	21		Ohms
Parallel Equivalent Input Capacitance (Pout = 3.5 W, V _{CC} = 12.5 Vdc, f = 27 MHz)	C _{in}	_	900		pF
Parallel Equivalent Output Capacitance (Pout = 3.5 W, V _{CC} = 12.5 Vdc, f = 27 MHz)	Cout	-	200		pF

(1) Percentage Up-Modulation is measured in the test circuit (Figure 1) by setting the Carrier Power ($P_{\rm C}$) to 3.5 Watts with V_{CC} = 12.5 Vdc and noting the power input. Then the Peak Envelope Power (PEP) is noted after doubling the original power input to simulate driver modulation (at a 25% duty cycle for thermal considerations) and raising the V_{CC} to 25 Vdc (to simulate the modulating voltage). Percentage Up-Modulation is then determined by the relation:

Percentage Up-Modulation =
$$\left[\left(\frac{PEP}{P_c} \right)^{1/2} - 1 \right] \bullet 100$$

(2)
$$\eta = \frac{R_F P_{out}}{(V_{CC})} \cdot (I_C)$$

FIGURE 3 - CIRCUIT TUNED AT 12.5 V, Pout = 4 W

